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Particle trajectories in a gently toroidal stellarator are investigated. The distribution function for the
particles is determined in the absence of collisions.

The lines of force of a magnetic field form surfaces in magnetic traps with rotational transformation. As a rule
the drift trajectories of plasma particles in such traps form surfaces which are fairly close to the magnetic surface.
However, the drift surfaces of particles moving with small velocities along the lines of force may suffer fairly strong
departures from the magnetic surfaces. The mixing which arises as a result of this can lead to a considerable increase
of particle and heat fluxes., These fluxes were found in [1] for the case of toroidal systems with axial symmetry, A
toroidal stellarator does not possess axial symmetry. The particle orbits, which perform a fairly complicated
precession in such traps, can depart even further from the magnetic surfaces [2—4]. This is most likely for particles
with small longitudinal velocities, particularly particles trapped in their motion along the lines of force within regions
where the magnetic field is 2 minimum. Such particle motion presents an exceedingly complicated picture since the
particles are situated in a field which is the superposition of two potential wells: the first associated with the fact that
the field is toroidal (as in the axiasymmetric case) and the second arising from the fact that the magnetic field is
helical, For this reason not even an estimate has been made up to the present of the mixing which results.

In what follows we consider the limiting case of a gently toroidal stellarator, for which the drift equations of
particle motion are integrable. The particle distribution function in the absence of collisions is automatically obtained
at the same time, The effect of collisions is subsequently calculated from perturbation theory.

1. Particle motion in a stellarator with a strong helical magnetic field, We consider particle motion in a helical
magnetic field which, to be specific, is taken to have three strands. The field is "bent" into a torus of large radius,
Close to the axis of the helical field the following additional approximations can be made to simplify the problem:

a} cross sections of the magnetic surfaces are concentric circles;

b) the contribution of transverse components of the helical magnetic field to the diamagnetic particle drift are
negligibly small compared with the contribution arising from the inhomogeniety of the longitudinal field By.

Close to the magnetic axis the following expression can be used [5]:

B, = By[1—¢g,c083 (80— az) —eg, cos V] (sh = 12,;;0 (ar)?, az-zg) . (1.1)

Here o is the pitch of the helical field; the last term on the right-hand side represents the toroidal correction,
80 that
g <L g {1.2)

The equations of motion of a charged particle with energy E and adiabatic invariant 4 can be represented in the
drift approximation in the following form (® (r) is the electric potential):
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The term (BJ/BO) V| is omitted in Eq. (1.3); it is assumed that it is small compared with the first term on the
right-hand side; this is valid close to the axis*, Centrifugal drift is not allowed for in Eq. (1.3) and (1.4) since we are
dealing with trapped particles (having small v |j components). It follows from [6] that this also imposes an upper limit
on the electric field strength.

By means of the substitution ¢ = 3(¢ ~ «z), the system of equations (1.3)—(1.5) in the zeroth approximation
(st= 0) can be reduced to a form similar to the equations of motion of particles in an axisymmetric torus, and if we
neglect the departure of the particles Ar from the magnetic surface (Ar is in fact a small quantity proportional to the
Larmor radius), then instead of (1.3) and (1.5) we can write the following equation to describe the motion with respect
to the ¢ coordinate:
d
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It follows from this that as in the case of an axisymmetric torus {6, 7], the motion of trapped particles can be
described in terms of elliptic functions with modulus

W (1.7)

The oscillation period of the trapped particles is equal to
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where K() is a complete elliptic integral of the first kind, ¢; is a zero of the expression in the radicand. The
corresponding orbits in the 4 —«az, r plane are shown in Fig. 1 (we will call these "bananas™). The trapped particles
move in the angular intervals

Yot (l— YY) KO —az<{Ypan(l4Ye) (=012, (1.9)

For what follows it is important to note that the particle orbits, on the average, drift in the z direction. The
velocity of this drift can be found from the obvious condition that

2 @y =0. (1.10)
This condition gives
dd\_ _  sdin__ ¢ dD __ 3pBy [2E (%)
Carp =T )=~ 55 @ " mo [ —1] e (1.11)

Here the angle brackets denote an average taken over an oscillation period for the trapped particles according to
the rule

CAe) =2K1(K)S UL - (1.12)

3 Vo —sink (1:9)

For weakly toroidal conditions £¢ = 0, it is clear that one can assume that the rapid banana~form motion of the
trapped particles between the magnetic stoppers is maintained, but the r coordinate of the banana as well as &), will
vary slowly. The equation describing this slow motion can be found averaging Eq. (1.4),

sAr A e BB gingy . ‘ (1.13)

—_— == == &t
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Within the approximation employed here Bg/By < @ (i.e., neglecting the rotational transformation) there is no
rapid motion with respect to ¢ and consequently {sin 4) = sin {(¢).

*This cannot be done even close to the axis for particles in transit.
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It is clear from Eq. (1.13) that as a result of the toroidal condition the banana will drift across the magnetic
surface. In the process of particle oscillation between regions with a strong helical magnetic field the radial toroidal
drift keeps the same sign until the particle falls into a toroidal drift region of the opposite sign, as a result of the slow
azimuthal {$#) motion. The slower the banana moves with respect to (#) (and consequently with respect to z), the
greater its departure from the original magnetic surface. In the approximation where the toroidal condition is very
slight the motion with respect to (#) is described by Eq. (1.11).

First of all, we consider the case in which the electric field d®/dr = 0. Then for ®* =} = 0,83 the drift veloeity
of the banana along the z-axis goes to zero (the right-hand side of Eq. (1.11) vanishes). In the process of the slow drift
motion such bananas turn out to be trapped within the limits of the bounded sections of the force lines and have
anomalously large departures from the magnetic surface. We expand the expression for the drift velocity d (#)/dt in
terms of a small departure from the point (xp, ry),

d ¢ S}LBE) d dxn?
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In terms of the variables

B —
= Py r=1"T0 (1.15)
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the system of the equations of motion (1,11) and (1.14) for the drift orbits (bananas) have the simple form

r = — gy 8in B, o = dde (1F — u?) — H.deyr {1.16)
Solving system {1.16) for the initial condition x(4 = 7 = 0, we find that the following quantity is conserved in the

drift process: '
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and the variation of (#) is described by the equation

3pB
r = may OV 12 e 2P — (T4 cos®)] (1.18)
2’[]222.7;:&{%2—%02]2. (1-19)
t

It is clear from this that the drift orbits of particles with the parameter 0 < =1 precess within limits of the
bounded sections of the lines of force with a period

20 2K
T, = _2mio K () (1.20)
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A graph of the maximum departure (r — rp) from the magnetic surface as a function of #* is given in Fig. 2.
Bananas at the capture limit n* = 1 have the greatest displacement

. g, Ly .
= (m) ro- (1.21)

Drift orbits which go right around the whole toroid in the drift procesé (we refer to these as transit bananas)
depart considerably less from the magnetic surface,

Ar,

Ar, o =~ 32; r. (1.22)
The precession period of such bananas is equal to
o= (e
In the presence of a fairly strong electric field
¢ 4D RBeey, (1.24)
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the drift velocity {#) does not vanish anywhere. As a result of this the drift orbits move along the torus with almost
constant velocity and gradually go around regions with different signs of toroidal drift. In this case trajectories
confined within the limited region of the magnetic lines of force do not exist at all, Solving the equation

am ___6_‘”’ (1.25)
Tdt B, dr )
together with Eq. (1.13), we have
d®
PO —ry= e G (08 () ), Tp = <uEz_7;;W) (1.26)

2, The banana kinetic equation. As a next step it is natural to write the kinetic equation describing the average
motion of the bananas. This is obtained by averaging the ordinary drift kinetic equation over a period of trapped-
particle rapid motion in the magnetic field. We introduce the distribution function Fy (xr, {8y, u,%%,t) for the bananas.
It obeys the kinetic equation

OF; ay 9F | ar auz or AF; -
i i 7 1 .
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where the drift equations (1.11) and (1.13) of the bananas must be used for d<{#)/dt and dr/dt, while
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The element of phase space for the bananas after integration over a period 3(4 — «z) has the form
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The collision integral in (2.1) for the bananas can be obtamed from the following considerations. For e < 1 the
number of bananas is small compared with the transit particles. Consequently, the collision integral can be linearized
if we neglect the collisions between the bananas. We begin from the familiar expression [8] for the linearized
collision integral:

2nhel & g N \[Oap  ?u?
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i
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This expression can be still further simplified if we take into account that the distribution of trapped particles is
most sensitive to changes in the longitudinal velocity and so all the remaining derivatives can be neglected in Eq. (1.3).
Moreover passing to the new variables u, W, o according to the relation which follows from Eq. (1.3) and (1.6), we
have '

aD B S
vy = —(F+2c[-”;1‘7°sh<u2—-sm-%>] . (2.4)

aBgr

Rewriting (2.3) in the form [1]

v, — e D —
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Finally, to obtain the collision integral for the bananas this expression must be averaged over a period of the
rapid oscillation of the trapped particles in the magnetic field according to rule (1.12). As a result we have

v, 1 3 Y i aF,
(S{F3} = a—; A=) oy ;;ﬁS K (t7) dt (a,t; + 2$18)LF3'>~ (2.6)

0

It should be kept in mind that the banana kinetic equation (3.1) is valid only when a trapped particle undergoes no
collisions at all during a period of the rapid motion:
Vi

1 —
&<~ Ve . (2.7)
K

&
otherwise the very concept of the bananas does not have any meaning,

3. Plasma transport coefficients in the absence of an electric field. In the final analysis the electric field ®(r)
must be determined from the condition of ambipolar diffusion. In what follows we consider the special limiting case in
which, as will be clear, the diffusion is ambipolar for d®/dr = 0, Since the particles in this case depart strongly from
the magnetic surfaces we can expect a large diffusion here.
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Fig. 2
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We consider the situation in which the collision frequency of the trapped particles lies in an interval between the
inverse precession periods of trapped and transit bananas:

T,l>ds Syt ' (3.1)
En &
Then in a small region of "energy™ ® of the trapped bananas the collisions manage to establish a Maxwell
distribution and so the complete solution of the banana kinetic equation (2,1) can be sought in the form of an expansion

in the small parameter (&/€p) < 1. To do this we write the distribution function Fj in the form of a Maxwell function
F§°) together with a small increment Fj1 since the system is toroidal:

Fj=FP(r, B) +FP (r 9, p %),

_Fj(o) r, E)= o5 (r) exp {__ 2E } . (3.2)

: g vk
In Eq. (2.1) for Fgl) we confine ourselves to the approximation for the collision integral and insert explicit
expressions for the drith velocities of the bananas from (1.11) and (1.13), The resulting equation

3B, (2K () oF ) W, BBy o OFP
i O (k& ‘1>“#+ TP =g sind —5 (3.3)
has the following solution:
- & OF f(D) cos & : 2E (v)
B = — g FTar 1P g o= — e 08 (g — 1)} - (3.4)

Here the symbol P is used to denote the principal value of the singular expression.

Multiplying function (3.4) by the drift velocity dr/dt of a banana and integrating (2.2) with respect to the phase
volume of the bananas, we find the plasma flux across the magnetic field:

m e L .

48 C [ pBo\Ys, uB
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(3.5)
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It follows from this that if inequalities (3.1) for the collision frequency of ions and electrons are satisfied (which,
by the way, cannot always be satisfied simultaneously for both types of particles) the diffusion of particles in an
isothermic plasma will be ambipolar,

If the collision frequency passes outside the limits of inequalities (3.1), the requirement that diffusion in a dense
plasma be ambipolar imposes a restriction of the following form on the electric field strength:

e;n % = m,-va d’;ir) . (3.6)

Here the subscript j refers to the class of particles which diffuse most strongly in the absence of an electric field.

4. The effect of an unperturbed electric field on the transport process. An electric field with amplitude (3.6)
reduces considerably the amount by which orbits depart from the magnetic surface, and also markedly smoothes the
way this depends on the energy of the particle. It is thus natural to expect a marked decrease of the transport

coefficients in a rarefied plasma.

First of all, we consider the case in which collisions are not very rare, when the drift orbits of the particles do
not manage to perform complete precession periods over the trajectories (1.26) durirg the collision time, i.e.,

V' -
L s (4.1)

The characteristic mixing scale is then the mean free path of a drift orbit between collisions:
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As the collision frequency decreases, the mixing scale increases and the transport coefficients increase
correspondingly. To calculate these numerically, we look for a solution of the kinetic equation (2.1) in the form of an
expansion with respect to smallness of the mean free path in the form (3.2). When condition {4.1) is satisfied it is
sufficient to take into account only collisions and toroidal drift in the kinetic equation {2.1). Further, because of the
smallness of displacement of the transit particles from the magnetic surface, the correction to the Maxwell
distribution function also turns out to be considerably less than for the bananas. However, the requirement that the
distribution function should be continuous imposes the condition that the correction F{V for the bananas should vanish
at the boundary of their phase volume: y

Ffo|,_ (=0 (4.3)

Using the boundary condition (4.3) we find a solution of the linearized equation (2.1):

aF(
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An expression for the flux of particles diffusing across the magnetic field is found by substituting the obtained
result into Eq. (3.5):

1 . o % .6/ :
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Here the left-hand inequality as regards the collision frequency is an expression of the fact that the precession
of the bananas becomes important only in a fairly rarefied plasma, when the free path of toroidal drift (4.2) of a
banana exceeds the width of a banana itself. Otherwise the plasma mixing in the process of the rapid motion of a
trapped particle along a banana, considered previously in [1], makes a larger contribution to the transport coefficients
than the weak precession of the banana (Fig. 3).

It follows directly from Eq. (4.5) that the ion and electron flux across the magnetic field will be ambipolar only
on condition that the electric field almost completely compensates the ion pressure (the case j =i in formula (3.6)).

The rate of ambipolar diffusion is then determined by the electrons, while the coefficients of jon thermal
diffusivity xii remains considerably greater than for the electrons, and can easily be found by the same method as the
particle flux, A maximum

2

D2
1 Ti
: o~ gy g 2
X1 h B

ci

is attained for a collision frequency on the order of one precession period of an orbit, and subsequently begins to
decrease linearly with v (see Fig, 3). The resulting expression (1.26) for the mixing length in this case enables us to
estimate the quantity y.Li without calculations:
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As the collision frequency decreases further, the electric field changes sign and the electrons begin to make the
greatest contribution to the thermal conductivity. '

5. The motion of trapped particles in a tight stellarator. We now consider the case which is just the opposite of
that considered previously. This is the case of a very tight stellarator.

We will use the magnetic field of a two-track stellarator close to the axis [5] as the model:

B = B, {1 —z, cos O} e, - arb{cos 2 (0 —az) — b/ Byl e +
+ orb sin 2 (% —az)e, (5.1)
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Two types of trapped particles must be distinguished. Some of these have a fairly large longitudinal velocity and
pass freely across the local magnetic bottles, which arise as a result of the rapid oscillations of the line of force
around its average position. Thus in the process of motion of such particles an averaging takes place over the period of
the helical field and this case reduces to the case already considered, i.e., an axisymmetric field with an average
rotatory transformation [1].

However, there also exists a group of particles with a very small longitudinal velocity

ba e
i
S <2BD> (5.2)

and these particles turn out to be trapped in the limits of one period of the helical field. The cause of this is the fact
that a line of force intersects the surface of the constant magnetic field where a maximum value of the field is obtained
for a given portion of a line of force, twice during one period ((see Fig. 4); the trajectory is represented by the dashed
line, and its projection onto the z = const plane is represented by the solid line). Just as in Section 2, we break up the
motion into rapid oscillations along the line of force and drift in the toroidal magnetic field. Solving the equation for
drift, averaged with respect to the rapid oscillations, we obtain the particle trajectory in the absence of an electric
field:

To

FOY =T G/ BY(E) /K () —05) °

(5.3)

E —pBo (1 —<g,> cos <&> — (Yab | Bo) <g>)

B (5.4)

n2

We find from (5.3) and (5.4) that a particle drifts approximately in the plane of the constant magnetic field until it
escapes, owing to a change in the parameter x?. It is true that during this time it drifts a distance on the order of the
dimensions of the system. In the presence of an equilibrium electric field (40) the toroidal drift of trapped particles is
averaged with respect to the angle ¢ because of the rapid drift (see Section 2) and the trajectory coincides with that
found previously (1.26). The departure of the particles from the magnetic surface in this case is reduced considerably
in comparison with the case in which there is no electric field.
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The transport coefficients can be calculated in the same way as in Section 5. Trapped particles of the first type
make the fundamental contribution to the transport processes when collisions are frequent, and particles of the second
type, when they are rare. As before, the coefficients D1 and xli as functions of the collision frequency are described
qualitatively in Fig. 3.

To obtain quantitative estimates we should keep in mind that the number of particles of the second type is
considerably smaller and the collision frequency much greater than for particles of the first type.

on 2 (b ‘/2. e~ /<b81> 5.5
n @ <Bo> ’ Vet = Vi [ \B, ) (5.5)
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